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Abstract. Evolution of the parton densities at NLO in αS using W̃ 2 = Q2(1 − z)/z instead of the usual
Q2 for the scale of the running coupling αS is investigated. While this renormalisation scale change was
originally proposed as the relevant one for x → 1, we explore the consequences for all x with this choice.
While it leads to no improvement to the description of DIS data, the nature of the gluon at low x, low Q2

is different, avoiding the need for a ‘valence-like’ gluon.

1 Motivation – non-singlet evolution

In deep inelastic scattering (DIS) the Q2 dependence of
flavour non-singlet quantities is quite straightforward. Tak-
ing a non-singlet structure function, e.g. F+

NS = F ep
2 −F en

2
or F−

NS = F ν̄p
2 −F νp

2 then at next-to-leading order (NLO)
we have

F±
NS(x, t) = q̃±

NS(x, t) +
(αS

4π

)
Bq(z) ⊗ q̃±

NS(x/z, t) (1)

where t = lnQ2 , q̃(x, t) = xq(x, t), the relevant combi-
nation of quark and antiquark densities (weighted by the
appropriate charges squared) is denoted by qNS and Bq(z)
is the quark coefficient function given, for example, in the
MS scheme by

Bq(z) =
[
B̂q(z)

]
+

=
[
P̂ (0)

qq (z)
{

ln
(

1 − z

z

)
− 3

2

}
+

1
2
(9 + 5z)

]
+

(2)

where

P (0)
qq (z) = [P̂ (0)

qq (z)]+ =
[
CF

(
1 + z2

1 − z

)]
+

(3)

is the well-known LO q-q splitting function.
Here [...]+ denotes the standard regularised functions

defined by∫ 1

0
dz [f(z)]+ g(z) =

∫ 1

0
dz f(z) [g(z) − g(1)] (4)

The NLO evolution of the non-singlet quark density is
governed by the qq and q̄q splitting functions

d

dt
q̃±
NS(x, t) =

{[(αS

2π

)
P̂ (0)

qq (z) +
(αS

2π

)2
P̂ (1)

qq (z)
]
+

±
(αS

2π

)2
P̂

(1)
q̄q (z) + δ(1 − z)

×
∫ 1

0
dz
(αS

2π

)2
P̂

(1)
q̄q (z)

}
⊗ q̃±

NS(x/z, t) (5)

The NLO splitting functions take the form

P̂ (1)
qq (z) = C2

F PF (z) +
1
2
CF CAPG(z) +

1
2
CF NF PNF

(z)

P̂
(1)
q̄q (z) = (C2

F − 1
2
CF CA)PA(z) (6)

and the explicit expressions for PF (z), PG(z), PNF
(z) and

PA(z) can be found in [1] for example.
By combining (1,5), the evolution of the non-singlet

structure functions to O(α2
S) may then be expressed in

the form
d

dt
F±

NS(x, t)

=

{[(αS

2π

)
P̂ (0)

qq (z) +
(αS

2π

)2
{P̂ (1)

qq (z) − 1
4β0B̂q(z)}

]
+

±
(αS

2π

)2
P̂

(1)
q̄q (z) + δ(1 − z)

∫ 1

0
dz
(αS

2π

)2
P̂

(1)
q̄q (z)

}
⊗F±

NS(x/z, t) (7)

If, in the above αS is a function of t only, the running
coupling can be taken outside the convolution integral and
we have the usual NLO in αS evolution as implemented
in standard analyses of DIS.

Next consider the case where the relevant scale de-
pends on z as well i.e. αS(Q2) → αS(φ(z)Q2) and, in
particular, the choice φ(z) = (1 − z)/z. The quantity
W̃ 2 = Q2(1 − z)/z is just the com energy squared of the
virtual photon-parton scattering which controls the max-
imum tranverse momentum occuring in the ladder graphs
which are summed to give the leading log contribution. As
z → 1, W̃ 2 as well as Q2 is large and it has been argued
[3,4] that, in this region, the relevant variable to account
for the large logs which arise beyond the control of the
renormalisation group is W 2 or a quantity closely related.

Expanding αS(t + ln[φ(z)]) to O(α2
S) we get

αS(t + lnφ(z))
2π

=
αS(t)
2π

− 1
2β0 ln[φ(z)]

(
αS(t)
2π

)2

(8)
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which means that, to this order, the change of scale of αS

is equivalent to adding an extra term inside the [...]+ of
(5) equal to

− 1
2β0

(
αS(t)
2π

)2

P̂ (0)
qq (z) ln[φ(z)] (9)

The above expressions for the evolution for q̃±
NS and

F±
NS are now to be understood with αS ≡ αS(t, z) but

we can see from (7,9) that to O(α2
S(t)) the shift in scale

is equivalent to a term in B̂q(z) equal to 2P̂
(0)
qq (z) ln[φ(z)]

or a term in P̂
(1)
qq (z) equal to − 1

2β0P̂
(0)
qq (z) ln[φ(z)]. Thus

taking φ(z) = (1−z)/z the first term in (2) is generated by
the change of scale Q2 → Q2(1 − z)/z and then to avoid
double counting at O(α2

S(t)) we should use the simpler
form

B̂q(z) −→ −3
2 P̂ (0)

qq (z) + 1
2 (9 + 5z) (10)

Since β0 = 1
4CF (11CA−2NF ) we note that some of the

NF dependence in the combination of the NLO NS split-
ting function and the quark coefficient function has been
absorbed by the change of scale. One can go further and
compute the form φ(z) should take in order to generate
the entire NF dependence at O(α2

S(t)). Wong [5] showed
that can be achieved by taking

φ(z) → φ̃(z)

=
(

1 − z

z2

)
exp[(CF /P̂ (0)

qq (z))( 1+13z
4 ) − 29

12 ] (11)

This is the BLM procedure [6] where the NF depen-
dence in a particular process is identified as arising from
the vacuum polarisation contributions to that process and
these are then entirely absorbed into the running coupling
thus providing a method of summing such contributions
to all orders. This procedure is therefore quite attractive
but it requires the choice of the z-dependent scale to vary
from process to process. In that sense the evolution of the
non-singlet structure function is a different process from
the singlet one. It is impractical to attempt an analysis
of DIS where the choice of renormalisation scale differs
for the singlet and non-singlet combinations and here we
shall explore the the consequences for a single choice of
scale, φ(z) = (1 − z)/z. It is clear that this simple choice
accounts, at O(α2

S), for large terms in the MS coefficient
functions ocurring both in singlet and non-singlet expres-
sions and it is worth investigating the phenomenological
consequences of the potentially large logarithms which are
summed by this procedure over the entire range of x.

2 Quark singlet and gluon evolution

Consider now the evolution of a singlet structure function,
FS(x, t) where

FS(x, t) = q̃S(x, t) +
(αS

4π

)
Bq(z) ⊗ q̃S(x/z, t)

+
(αS

4π

)
Bg(z) ⊗ g̃(x/z, t) (12)

where q̃S(x, t) = x
∑

(q(x, t) + q̄(x, t)), and Bg(z) is the
gluon coefficient function given in the MS scheme by

Bg(z) = 2P̂ (0)
Sg (z) ln

(
1 − z

z

)
+ 2NF [8z(1 − z) − 1] (13)

where
P̂

(0)
Sg (z) = NF [z2 + (1 − z)2 ] (14)

is the LO q-g splitting function.
The NLO evolution of the singlet quark density is gov-

erned by the appropriate SS and Sg splitting functions

d

dt
q̃S(x, t)

=

{[(αS

2π

)
P̂ (0)

qq (z) +
(αS

2π

)2
P̂ (1)

qq (z)
]
+

+
(αS

2π

)2 {
P̂

(1)
q̄q (z) + ∆P̂ (1)

qq (z)
}

+ δ(1 − z)
∫ 1

0
dz
(αS

2π

)2
P̂

(1)
q̄q (z)

}
⊗ q̃S(x/z, t)

+
{(αS

2π

)
P̂

(0)
Sg (z) +

(αS

2π

)2
P̂

(1)
Sg (z)

}
⊗ g̃(x/z, t) (15)

where ∆P̂
(1)
qq (z) and P̂

(1)
SG(z) have the form

∆P̂ (1)
qq (z) = CF NF Fqq(z)

P̂
(1)
SG(z) = 1

2CANF F (1)
qg (z) + 1

2CF NF F (2)
qg (z) (16)

and the relevant expressions for the F ’s can be read off
from [2]. As in the non-singlet case, we can combine (12,15)
and the evolution of the gluon into a ‘one-step’ evolution
of the singlet structure function [7] correct to O(α2

S) which
is of the form

d

dt

(
FS(x, t)
g̃(x, t)

)
=
{(αS

2π

)
P(0)

S (z) +
(αS

2π

)2

×
{

P(1)
S (z) − 1

4
β0D(1)(z) + E(1)(z)

}}

⊗
(

FS(x/z, t)
g̃(x/z, t)

)
(17)

where P(0)
S , P(1)

S , D(1) and E(1) are given in [7].
Using (8) we have again that the effect of changing

the scale Q2 → Q2(1 − z)/z is to generate, at O(α2
S), the

logarithm terms which explicitly appear in both the MS
gluon and quark coefficient functions. So in addition to
(10) we take

Bg(z) −→ 2NF [8z(1 − z) − 1] (18)

For the gluon evolution we simply insert counter terms
involving φ(z) to restore (17) at O(α2

S(t)) generated by the
scale change.

d

dt
g̃(x, t) =

{
1
z

[(αS

2π

)
zP̂ (0)

gg (z) +
(αS

2π

)2
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Fig. 1. Running couplings used in the various fits. The
solid line shows αS(|W̃ 2|) versus W̃ 2, the dashed line shows
|αS(W̃ 2)| versus W̃ 2, the values of ΛMS being indicated. The
dotted line shows, for the sake of comparison versus αS(Q2)
versus Q2, the running coupling used in the standard MRST
fit

× z
(
P̂ (1)

gg (z) + 1
2 β0 P̂ (0)

gg (z) ln[φ(z)]
)]

+

−δ(1 − z)
∫ 1

0
dz
[(αS

2π

)
P̂

(0)
Sg (z)

+
(αS

2π

)2
P̂

(1)
Sg (z)

]}
⊗ g̃(x/z, t)

+
{(αS

2π

)
P̂

(0)
gS (z) +

(αS

2π

)2 (
P̂

(1)
gS (z)

+ 1
2β0P̂

(0)
gS (z) ln[φ(z)]

)}
⊗ q̃S(x/z, t) (19)

While in the non-singlet case a single change of scale
for αS ((11)) can be chosen to absorb all the Nf de-
pendence at O(α2

S), the situation is more complicated
here and a similar BLM procedure would involve differ-
ent choices of scale for the quark singlet and gluon evolu-
tion. An alternative to (17) would be a one step evolution
expressed in terms of physical structure functions only,
FS(x, t) and FL(x, t) in which case the modifications due
to Q2 → φ(z)Q2 could be entirely absorbed at O(α2

S) into
the coefficient functions Bq(z) and BL(z).

3 Fitting the DIS data

A practical problem that arises in using φ(z) = (1 − z)/z
is simply that the integrations involved in the convolution
integrals run up to z = 1 and so we must adopt some
sensible approach for computing the running coupling at
low values of the scale. Since the argument W̃ 2 of αS is
actually timelike, then beyond leading order the coupling
is complex. (Recall that the perturbation expansion is de-
rived strictly in spacelike region and then continued ana-
lytically to the timelike region.) We consider two possibili-
ties (i) compute αS(|W̃ 2|) in terms of ΛMS in the standard
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Fig. 2. Comparison of the evolutions with scales W̃ 2 and Q2

from a common set of parton distributions at Q2
0 = 0.5 GeV2

and with a common value of ΛMS

NLO way but ‘freeze’ its value for |W̃ 2| < Q2
f and (ii) use

|αs(W̃ 2)| as the running coupling. This latter variable is
claimed [8] to be a far more efficient expansion parame-
ter (since it resums large terms involving π2 arising from
the analytic continuation) and grows only weakly as the
argument becomes very small. The imaginary part of αS

is computed from the modulus at NLO,

Im(αS) =
β0

4
|αS |2 +

β1

16π
|αS |3 (20)

Figure 1 displays the running couplings used in our fits
compared with the αS used by a conventional fit using a
z-independent scale, the values of ΛMS giving the best fit
to the DIS data being shown. For the choice αS(|W̃ 2|) the
quality of the fit is not overly sensitive to the precise value
of the scale at which the coupling is frozen and we take a
value around 1 GeV2.

As with the usual analysis of DIS structure functions,
the parton distribution functions (pdf’s) are parametrised
at some starting scale, Q2

0, but now evolved according to
(7,15,19). In the recent MRST fits [9], the starting scale
is Q2

0 = 1 GeV2 and the gluon at small x is suppressed
(so-called ‘valence-like’ gluon) at this Q2 in order to de-
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Fig. 3. Slope of F2 for different x val-
ues measured by ZEUS[12]. Note the
strong correlation between the value of
x and the mean value of Q2. The data
are compared to fits to DIS data using
a scale Q2 or a scale W̃ 2

scribe the relatively small slope dF2/d lnQ2 of the struc-
ture function observed at HERA [10,11] at low x and low
Q2. At low x, the mean value of z in the evolution is also
low implying that the scale W̃ 2 is much larger than Q2

and hence the gluon evolution is naturally suppressed at
low x. In Fig. 2 we show a comparison of the structure
function evolution for a common set of pdf’s at Q2

0 ac-
cording to the two scales. The starting scale is Q2

0 = 0.5
GeV2 and it is clear that evolving with the scale W̃ 2 leads
to dramatically slower evolution at low x and low Q2, even
with a common value of ΛMS.

The concept of a gluon distribution vanishing as x →
0 (even at low Q2) seems unnatural and leads to prob-
lems when attempting to evolve down in Q2 since phys-
ical quantities, such as FL quickly become negative. The

comparison in Fig. 2 shows we can instead start with a
larger gluon and in fact we find the data can be fitted a
gluon distribution which is actually singular for Q2

0 as low
as 0.5 GeV2.

DIS data fitted include the HERA data [10–12],
BCDMS [13], E665 [14], SLAC [15] and NMC [16]. We la-
bel the two types of fits as type (i) or type (ii) depending
on the choice αS(|W̃ 2|) or |αS(W̃ 2)|. There has been much
interest in the values of the slope dF2/d lnQ2 shown by
the low x, low Q2 1995 ZEUS data [12] that has prompted
speculation about a possible breakdown of the standard
theory [17]. A type (i) fit gives a satisfactory description of
the slopes observed by ZEUS without the need to invoke
a ‘valence-like’ gluon distribution at low Q2 − as shown
in Fig. 3 and as anticipated above. Because of the more
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conventional behaviour of the gluon at small x one can
evolve to values of Q2 below 1 GeV2. At the starting scale
Q2

0 = 0.5 GeV2 the gluon has the form

xg(x, Q2
0) = 1.25x−0.046(1 − x)5.52(1 + 0.032

√
x + 5.66x)

(21)
which is virtually ‘flat’ at small x.

Fig. 3 clearly shows a good description of the F2 slopes
in the HERA range both for the conventional type of fit
and for the new type (i) fit using a z-dependent scale.
Copmparing in detail the quality of the fits, we obtain

H1 ZEUS BCDMS NMC SLAC E665

No. data pts 221 216 174 130 70 53
χ2 (MRST) 164 264 249 143 116 56
χ2 (type (i) fit) 164 270 243 170 134 52
χ2 (type (ii) fit) 178 298 260 223 156 48

In the new fits, the cuts applied are the same as for
MRST, in particular Q2 > 2 GeV2 except for the HERA
data where we take Q2 > 1.5 GeV2. For the HERA data
with Q2 > 1.5 GeV2, fit (i) achieves virtually the same
quality as the conventional type fit but can, in addition,
give a good description down to Q2 = 1 GeV2. The type
(ii) is slightly worse for the HERA data. For the ‘inter-
mediate’ x region covered by NMC, the new fits are not
as successful as the conventional MRST fit, especially the
type (ii) fit, and this is due to problem of trying to describe
the Q2 slopes of the NMC data while simultaneously being
consistent with the slopes measured at HERA. The MRST
fit already underestimates the slopes observed by NMC
and the new fits only serve to emphasise the disagreement
as shown in Fig. 4. Type (ii) fit being even worse indicates
that the results are sensitive to the precise nature of the
coupling at very low values of the scale.

4 Conclusions

Although the motivation for evolving partons with a scale
φ(z)Q2 where φ(z) = (1−z)/z stems from a procedure for
resumming terms which are potentially large as x → 1, it
is worth exploring the phenomenological consequences for
quarks and gluons over the whole x region. In fact we did
examine whether the large x region was better described
in terms of a running coupling with the choice of scale
Q2(1− z)/z - the hope being that the observed strong Q2

observed at values of x beyond 0.6 might be absorbed by
such a choice instead of conventional higher twist contri-
bution ( see [19] for example) but we found no evidence
for this. The change of scale Q2 → φ(z)Q2 generates cor-
rections at O(α2

S) which already appear explicitly as the
logarithm terms in the MS coefficient functions, so evolv-
ing with the z-dependent scale implies somewhat simpler
expressions for the coefficient functions. It should be re-
membered that our change of scale is a change of renormal-
isation scheme and in order to maintain the expressions
for the evolution of the physical F2 structure function to
O(α2

s) we must modify the coefficient functions and the
relevant splitting functions as shown in Sects. 1 and 2. Also
the regularising counter terms (proportional to δ(1 − z))
are more complicated due to αS depending on z.

Performing fits with two alternative prescriptions for
handling the running coupling at low values of the scale
leads to a preference for the simpler choice of freezing
its value at around 1 GeV2. In this case one can get ac-
ceptable fits to the DIS data but no improvement over
the standard procedure is observed; in fact the problem
of trying to reconcile the slopes dF2/d lnQ2 measured by
NMC with those measured at HERA is is actually aggra-
vated. This subtle Q2 dependence of the slopes has only
been successfully described when effects beyond standard
DGLAP physics are included. In particular Thorne [18]
was able to achieve a high degree of consistency between
all the DIS data sets with a leading order, renormalisa-
tion scheme consistent calculation which included leading
ln(1/x) terms1.

An advantage which has been gained in using the scale
Q2(1−z)/z is that the gluon distribution at low Q2 seems
more ‘natural’ than the ‘valence-like’ gluon which the stan-
dard DGLAP description finds necessary to account for
the small values of the slopes observed by ZEUS [12]. We
therefore expect that quantities dominantly governed by
the gluon are sensitive to the change of scale, in partic-
ular the longitudinal structure function at low x, low Q2

is quite different. Fig. 5 shows a comparison between pre-
dictions for FL at Q2 = 1 GeV2 resulting from fits to F2
using Q2 or W̃ 2 as the choice of scale. The curious ‘dip’ of
the MRST curve is due to the suppressed gluon contribu-
tion at low x while the smoother behaviour of the fit with
the z-dependent scale reflects a dominance of the gluon
contribution at small x.

1 In an analysis of NLO corrections to BFKL equation,
Thorne [20] has shown how an x-dependent choice of scale can
effectively describe corrections at low x
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In summary, the effects of resumming some of the
log(1−x) terms through the change of scale does not lead
to any improvement phenomenologically though it is con-
sistent with a significantly different, and perhaps rather
more natural, form of the gluon distribution at very low
values of Q2. The exercise indicates that there is therefore
a degree of uncertainty in the detailed nature of the gluon
density at such low scales.
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